Computing the Dimension of Linear Subspaces
نویسندگان
چکیده
Since its very beginning, linear algebra is a highly algorithmic subject. Let us just mention the famous Gauß Algorithm which was invented before the theory of algorithms has been developed. The purpose of this paper is to link linear algebra explicitly to computable analysis, that is the theory of computable real number functions. Especially, we will investigate in which sense the dimension of a given linear subspace can be computed. The answer highly depends on how the linear subspace is given: if it is given by a finite number of vectors whose linear span represents the space, then the dimension does not depend continuously on these vectors and consequently it cannot be computed. If the linear subspace is represented via its distance function, which is a standard way to represent closed subspaces in computable analysis, then the dimension does computably depend on the distance function.
منابع مشابه
ENTROPY OF GEODESIC FLOWS ON SUBSPACES OF HECKE SURFACE WITH ARITHMETIC CODE
There are dierent ways to code the geodesic flows on surfaces with negative curvature. Such code spaces give a useful tool to verify the dynamical properties of geodesic flows. Here we consider special subspaces of geodesic flows on Hecke surface whose arithmetic codings varies on a set with innite alphabet. Then we will compare the topological complexity of them by computing their topological ...
متن کاملCyclic Orbit Codes with the Normalizer of a Singer Subgroup
An algebraic construction for constant dimension subspace codes is called orbit code. It arises as the orbits under the action of a subgroup of the general linear group on subspaces in an ambient space. In particular orbit codes of a Singer subgroup of the general linear group has investigated recently. In this paper, we consider the normalizer of a Singer subgroup of the general linear group a...
متن کاملIsotropic Constant Dimension Subspace Codes
In network code setting, a constant dimension code is a set of k-dimensional subspaces of F nq . If F_q n is a nondegenerated symlectic vector space with bilinear form f, an isotropic subspace U of F n q is a subspace that for all x, y ∈ U, f(x, y) = 0. We introduce isotropic subspace codes simply as a set of isotropic subspaces and show how the isotropic property use in decoding process, then...
متن کاملReal Linear Maps Preserving Some Complex Subspaces
We find configurations of subspaces of a complex vector space such that any real linear map with sufficiently high rank that maps the subspaces into complex subspaces of the same dimension must be complex linear or antilinear.
متن کاملThe Cohomology Ring of the Complement of a Finite Family of Linear Subspaces in a Complex Projective Space
The integral cohomology ring of the complement of an arrangement of linear subspaces of a finite dimensional complex projective space is determined by combinatorial data, i.e. the intersection poset and the dimension function.
متن کامل